The role of fibrinogen glycation in ATTR: evidence for chaperone activity loss in disease.

نویسندگان

  • Daniel Fonseca
  • Samuel Gilberto
  • Cristina Ribeiro-Silva
  • Raquel Ribeiro
  • Inês Batista Guinote
  • Susana Saraiva
  • Ricardo A Gomes
  • Élia Mateus
  • Ana Viana
  • Eduardo Barroso
  • Ana Ponces Freire
  • Patrick Freire
  • Carlos Cordeiro
  • Gonçalo da Costa
چکیده

Transthyretin amyloidosis (ATTR) belongs to a class of disorders caused by protein misfolding and aggregation. ATTR is a disabling disorder of autosomal dominant trait, where transthyretin (TTR) forms amyloid deposits in different organs, causing dysfunction of the peripheral nervous system. We previously discovered that amyloid fibrils from ATTR patients are glycated by methylglyoxal. Even though no consensus has been reached about the actual role of methylglyoxal-derived advanced glycation end-products in amyloid diseases, evidence collected so far points to a role for protein glycation in conformational abnormalities, being ubiquitously found in amyloid deposits in Alzheimer's disease, dialysis-related amyloidosis and Parkinson's diseases. Human fibrinogen, an extracellular chaperone, was reported to specifically interact with a wide spectrum of stressed proteins and suppress their aggregation, being an interacting protein with TTR. Fibrinogen is differentially glycated in ATTR, leading to its chaperone activity loss. Here we show the existence of a proteostasis imbalance in ATTR linked to fibrinogen glycation by methylglyoxal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Genetic Factors in Familial Amyloidotic Polyneuropathy: Protein Glycation and the Loss of Fibrinogen's Chaperone Activity

Familial amyloidotic polyneuropathy (FAP) is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR). This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR te...

متن کامل

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

Effect of glycation on α-crystallin structure and chaperone-like function

The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone funct...

متن کامل

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

ADVANCED GLYCATION END PRODUCTS AND ThiOBARBITURIC ACID REACTIVE SUBSTANCE IN GINGIVAL TISSUES OF DIABETIC AND NON-DIABETIC PATIENTS WITH CHRONIC PERIODONTITIS

 ABSTRACT Background: Production of advanced glycation end products (AGEs) is directly linked to the level and duration of hyperglycemia in diabetic patients. Oxidative stress plays a major role in the pathogenesis of diabetes mellitus. Free radicals are f01med in diabetes by glucose oxidation, nonenzymatic glycation of proteins and subsequent oxidative degradation of glycated proteins. Thiobar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 473 14  شماره 

صفحات  -

تاریخ انتشار 2016